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Synopsis The new fields of ecological immunology and disease ecology have begun to merge, and the classic fields

of immunology and epidemiology are beginning to blend with them. This merger is occurring because the integrative

study of host–parasite interactions is providing insights into disease in ways that traditional methods have not. With the

advent of new tools, mathematical and technological, we could be on the verge of developing a unified theory of infectious

disease, one that supersedes the barriers of jargon and tradition. Here we argue that a cornerstone of any such synthesis will

be host competence, the propensity of an individual host to generate new infections in other susceptible hosts. In the last

few years, the emergence of systems immunology has led to novel insight into how hosts control or eliminate pathogens.

Most such efforts have stopped short of considering transmission and the requisite behaviors of infected individuals that

mediate it, and few have explicitly incorporated ecological and evolutionary principles. Ultimately though, we expect that

the use of a systems immunology perspective will help link suborganismal processes (i.e., health of hosts and selection on

genes) to superorganismal outcomes (i.e., community-level disease dynamics and host–parasite coevolution). Recently,

physiological regulatory networks (PRNs) were cast as whole-organism regulatory systems that mediate homeostasis and

hence link suborganismal processes with the fitness of individuals. Here, we use the PRN construct to develop a roadmap

for studying host competence, taking guidance from systems immunology and evolutionary ecology research. We argue that

PRN variation underlies heterogeneity in individual host competence and hence host–parasite dynamics.

‘‘Models are where the theoretical rubber meets

the empirical road’’—Zamer and Scheiner (2014).

Introduction

For most of its history, immunology has favored re-

ductionism over holism, conceiving host defenses as

decomposable, linear processes. This directive prob-

ably persisted because reductionism was so success-

ful, providing such strong causal inference.

Reductionism, while unquestionably valuable, has at

least two limitations (Kohl et al. 2010; Yuste 2015).

First, reductionism misses that many infections are

of importance to the whole organism, not just the

cells and tissues proximal to the problem. Indeed,

many infections have implications for host

reproduction, social behavior, and other traits

(Sheldon and Verhulst 1996; Martin et al. 2008),

but these effects have only recently gained attention.

The second limitation of reductionism is that it

rarely leads to generalizations. Systems immunology,

by contrast, uses -omics approaches to capture the

complexity of immune responses (Zak and Aderem

2009; Shapira and Hacohen 2011; Diercks and

Aderem 2013). Such holistic research is poised to

change our understanding of host–parasite interac-

tions because no longer are we constrained to

study just a few cells or proteins, which is especially

limiting when novel host–parasite interactions are of

interest (Adelman 2014; Jackson 2015). Indeed, we

can now collect data on processes we might never

have thought to consider from a purely reductionist
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perspective. Right now though, the strength of sys-

tems approaches lie in their ability to generate

and describe large datasets (Kohl et al. 2010).

Rarely have they instigated a priori hypothesis

testing, and when they were used to guide re-

search programs, most such work minimally

involved ecology and evolution (Li et al. 2011;

Arazi et al. 2013).

By contrast, many evolutionary biologists have

asked, with little emphasis on mechanistic details,

i) how mobilization of resources can help combat

infections (Shudo and Iwasa 2001, 2002), ii) how

body size constrains defense architectures (Cohn

and Langman 1990; Wiegel and Perelson 2004;

Savage et al. 2007), iii) how host life history strate-

gies shape immune defenses (Lee 2006; Martin et al.

2007), and iv) how collateral damage selects for op-

timal, not maximal, immunity (Graham 2002;

Graham et al. 2005). Because those studies typically

caricaturize the immune system, it is not always ob-

vious how they feed into basic immunology. Many

have claimed that it will be beneficial to merge eco-

evolutionary ideas with the tools of systems immu-

nology (Turner and Paterson 2013; Jackson 2015),

but we as yet lack a way to do so, particularly one

amenable to the diverse hosts that circulate parasites

in natural communities (Downs et al. 2014). An im-

mediate benefit of such an approach would be that

immunology and epidemiology become unified.

Because the former has tended to focus on individual

host health and the latter is directed at understand-

ing the movement of parasites through communities,

both have developed their own lexicons and research

agendas. Beyond vaccination immunology and a few,

more recent efforts (Ezenwa and Jolles 2015; Handel

and Rohani 2015; VanderWaal and Ezenwa 2016;

Vazquez-Prokopec et al. 2016), cross-talk between

epidemiology and immunology is just beginning.

One concept that has fostered such cross-talk is

parasite tolerance (Raberg et al. 2007). Parasite tol-

erance, distinct from the concept of self-antigen tol-

erance (Medzhitov et al. 2012), is a host defense

strategy whereby hosts cope with the effects of par-

asites on health or fitness, not parasite burden itself.

Tolerant hosts cope well with even high parasite bur-

dens whereas intolerant individuals suffer even with

low burdens (Jackson et al. 2014; Råberg 2014).

Tolerant hosts might be much more common than

we currently recognize, as emphasized by the moni-

ker ‘‘reservoir species,’’ which recognizes hosts that

carry parasites but seem to suffer little from them.

Critically, these and other tolerant hosts might be

threatening to other hosts (Guivier et al. 2014), es-

pecially if their high tolerance is correlated to their

ability to amplify and/or transmit parasites

(Tompkins et al. 2011; Barron et al. 2015;

VanderWaal and Ezenwa 2016). Historically, so

much immunological research has focused on under-

standing the reduction of parasite burden even

though parasite eradication seems to have rarely

been an evolutionary solution to infection (Stearns

and Koella 2007). A concerted focus on parasite tol-

erance might provide us novel and even more prac-

tical methods of disease mitigation (Venesky et al.

2012).

In the present paper, we describe a generic ap-

proach to characterizing host competence that

merges the tools of systems immunology with the

conceptual foundations of ecology and evolution.

We define host competence as the ability of a host

to transmit parasites such that they effectively infect

another host or vector. We focus on this trait be-

cause it links what happens inside a host to what

happens among hosts in a community (Gervasi et

al. 2015). Most disease researchers have some explicit

or implicit interest in host competence. In fact, het-

erogeneity in aspects of host competence has been

characterized and its implications mapped on

higher biological scales (Paull et al. 2011). So far

though, we still lack a measureable trait that captures

accurately host competence. We propose a physio-

logical regulatory network (PRN) framework to

serve this task (Cohen et al. 2012a; Martin and

Cohen 2014). The advantage of the PRN perspective

is that it will be informative to biologists interested

in any host–parasite system at any level of analysis

(Downs et al. 2014), yet we make our case here using

West Nile virus (WNV) as an example, as it is a

system of substantial consequence for humans and

wildlife (Marra et al. 2004; Kilpatrick et al. 2007;

LaDeau et al. 2007).

Defining host competence

Heterogeneity in host competence occurs across ge-

notypes, individuals, populations, and even species

(Paull et al. 2011; Gervasi et al. 2015). At the species

level, the competence of the white-footed mouse

(Peromyscus leucopus) for nymphal ticks infected

with Borrelia burgdorferi bacteria partly explains

Lyme disease dynamics in rural parts of New York

state (Brunner et al. 2008; Ostfeld et al. 2014).

Around Washington, DC, the competence of

American Robins (Turdus migratorius) for attracting

the bites of Culex sp. mosquitoes is a major explan-

atory factor in the spatiotemporal cycles of WNV

(Kilpatrick et al. 2006a, 2006b). At the level of indi-

viduals, heterogeneity in competence also affects
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disease dynamics (McDade 2005; Quintana-Murci

and Clark 2013). Broad differences in individual be-

havior and physiology influence exposure to and

subsequent burden and transmission of various par-

asites (Ferrari et al. 2004; Beldomenico and Begon

2010; Hawley and Altizer 2011). Variation in indi-

vidual competence is also thought to explain partly

why parasite prevalence varies over space and time in

so many populations and species (Hawley et al. 2011;

Coon et al. 2014). Most relevant to the remainder of

this paper, variation in individual competence is the

basis of the 20:80 rule (Woolhouse et al. 1997),

which highlights that 80% of infections are caused

by 20% of members of a host population. In general,

host infectiousness is rarely randomly distributed

(Lloyd-Smith et al. 2005); some hosts are dispropor-

tionately responsible for transmission for parasites

with diverse life histories, transmission modes, and

evolutionary legacies. Consider for example Mary

Mallon, a cook in New York City around 1906

(Soper 1939) who was responsible for numerous

cases of typhoid fever but suffered little herself

from the bacterium. Superspreaders such as Mallon

are implicated in multiple microparasite disease sys-

tems (e.g., SARS, HIV, influenza). Many macropar-

asites (e.g., ticks and helminths) exhibit aggregated

distributions among individual hosts, suggesting sim-

ilar superspreading dynamics (Lloyd-Smith et al.

2005). Super-receivers, animals more likely to con-

tract infections (Hamede et al. 2013; Adelman et al.

2015), are also being discovered, and these individ-

uals too might have important impacts on disease

dynamics (Raffel et al. 2008). Overall, individual het-

erogeneity in host competence appears to be a key

trait to understanding the ecology and evolution of

host–parasite interactions.

Host competence and PRNs

Heterogeneity in host competence can take many

forms and hence contribute to disease dynamics by

many pathways (e.g., death, immune memory, para-

site shedding, attractiveness/value to vectors)

(Hawley et al. 2011; Barron et al. 2015). Broadly,

host competence can be split into two parts: behav-

ioral and physiological. Although behavioral aspects

will no doubt be critical to understanding compe-

tence, and physiological and behavioral elements of

competence are apt to covary in important ways

(Korte et al. 2005; Hawley et al. 2011), due to

space constraints, we do not discuss the behavioral

dimensions of host competence here. We instead

refer readers to recent papers on the topic (Barber

and Dingemanse 2010; Hawley and Altizer 2011;

Barron et al. 2015). We focus here on the physiolog-

ical basis of competence. If parasites cannot over-

come defensive barriers and infiltrate the

appropriate tissue or cell, or if hosts die before

they can transmit a parasite to a new host, hosts

are by definition incompetent. The more interesting

hosts to consider, then, are those that vary in the

propensity to pass parasites to other susceptible

hosts and vectors when such opportunities arise.

The immune system is an obvious and likely crit-

ical aspect of host competence. However, many other

systems will be important too. Reproductive hor-

mones can suppress immunity (Foo et al. 2016),

the nervous and endocrine system are intimately

intertwined with lymphoid cells and tissues (Demas

et al. 2011), and food amount and nutrient compo-

sition can strongly shape a host’s defense portfolio

(Klasing 2007). In other words, host competence is

probably best understood as an integrated, organis-

mal trait directed at maximizing host reproductive

fitness (Martin et al. 2014), not just the outcome

of weak immune functions. In the last 15 years, sys-

tems immunology (Kohl et al. 2010) has allowed us

to start capturing the complexity inherent to such a

trait, and another field, psychoneuroimmunology

(PNI), has already been studying host defenses as

integrated traits. To date though, PNI has attended

mostly to non-infectious (or not obviously infec-

tious) diseases such as depression and anxiety-like

disorders (Bilbo et al. 2008; Galic et al. 2009).

Among the PNI studies that have focused on viral

and bacterial infections, most have stopped at the

level of individual health (Bailey et al. 2003, 2009).

Only a handful has considered how neuroendocrine-

immune interactions might impact parasite transmis-

sion (Cohen and Hamrick 2003; Cohen et al. 2012b).

However, as the few collaborations among tradi-

tional, PNI, and eco-evolutionary immunologists

have been fruitful (Ferreira et al. 2011; Medzhitov

et al. 2012; Brock et al. 2014; Regoes et al. 2014;

Torres et al. 2016), it would likely be very valuable

to develop a measureable form of competence, ame-

nable to the interests of biologists working at differ-

ent levels. Such was partly the motivation developing

PRN theory (Martin et al. 2011; Cohen et al. 2012a;

Martin and Cohen 2014).

PRN theory takes lessons from realms of biology

that demonstrably have dealt well with complexity:

community ecology and gene network biology. These

disciplines recognize that epistasis and species inter-

actions play strong roles in i) phenotypic variation

and ii) community stability and productivity, respec-

tively. What is unique about these fields is that the

above effects (items i and ii) are not expected to be

Host competence 3

 at U
niversity of South Florida on July 21, 2016

http://icb.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: , 
Deleted Text: , etc.
Deleted Text: -
Deleted Text: physiological regulatory networks (
Deleted Text: )
Deleted Text: , etc.
Deleted Text: ,
Deleted Text: physiological regulatory network (
Deleted Text: )
Deleted Text: ,
http://icb.oxfordjournals.org/


decomposable to network components. Indeed, these

traits are understood as emergent properties of net-

works. In the case of host competence then, variation

at higher biological levels (i.e., cells, tissues, and

whole organisms) arises from quantitative variation

among nodes (e.g., cytokines, chemokines, steroids,

various receptors), but especially direct and indirect

interactions (edges) among nodes (Fig. 1). Other

bionetworks, natural communities of plants and an-

imals (Dunne et al. 2002) and gene networks

(Wagner et al. 2007), exhibit power-law distributions

in node connectivity. This means that if PRNs re-

semble other bionetworks, they might be more em-

pirically tractable than they at first would seem.

Indeed, a concerted focus on particular PRN mole-

cules (i.e., date hubs or integrators; Fig. 1) and their

linkages might be a good place to start learning

about the mechanistic basis of host competence.

Even though whole-organism traits will often be

emergent, high connectivity of some nodes suggests

that some molecules might act at the level of whole

organisms as master regulatory genes (e.g., Hox) do

within gene regulatory networks (Martin et al. 2011).

PRN theory also takes guidance from behavioral

and evolutionary endocrinology (Sinervo and

Calsbeek 2003; McGlothlin and Ketterson 2008;

Wingfield 2013). For years, those fields have em-

phasized that some steroids and other hormones

can act as physiological ‘‘keystone’’ molecules

(Wagner et al. 2007). Such date hubs are highly

connected to other nodes and thus might play par-

ticularly integral roles in regulating developmental

plasticity and phenotypic flexibility (Martin et al.

2011). By contrast, other PRN nodes are highly

connected but only locally (party hubs), coordinat-

ing small-scale functions. Yet other PRN nodes are

minimally connected and predominantly perform

physiological work. Digestive enzymes, heat shock

proteins, and other active molecules fall into this

group. From an immunological perspective, addi-

tional PRN nodes serve as detectors of threats

(e.g., Toll-like receptors) and effectors of parasite

control (e.g., antimicrobial peptides, acute phase

proteins) and collateral damage, healing and recov-

ery mitigators (e.g., antioxidants, clotting factors)

(Medzhitov 2008).

Fig. 1 A simplified, partial schematic of physiological regulatory network (PRN). Red arrows indicate top-down control, such as steroid

hormone modulation of immune function. Purple arrows indicate feedback effects such as antioxidant effects of glucocorticoids. Light

blue arrows indicate direct interactions among subnetworks, yellow arrows indicate environmental regulation of integrators, usually via

the central nervous system (CNS). System-level properties of the PRN exist at different levels, including state within individuals (e.g.,

dysregulation) and species-level structure (modularity). Likewise, phenotype can include individual—or species-level traits (e.g., health

and evolvability, respectively). Modularity is determined by the proportion of potential light-blue arrows present; interconnectedness by

the total number of arrows relative to molecules; and robustness by the density of purple arrows resulting in negative feedback effects.

Temporal dynamics and metabolite flux (not shown) can also be important determinations of system-level properties, such as dys-

regulation. The particular structure of connections, as well as their strengths and interactions, will determine how the PRN responds at

an individual level and evolves at the species level in response to a changing environment.
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For the PRN construct to be a useful measure of

host competence, another currently understudied

phenomenon must also be addressed: plasticity.

Plasticity in competence can alter the contributions

of hosts to community disease dynamics to a similar

degree as better-studied ecological drivers such as

host density and diversity (Gervasi et al. 2015).

Whereas systems immunology approaches have the

potential to describe plasticity simply by repeated

sampling across contexts, they have rarely done so.

There are experimental and statistical approaches

available for generating representative datasets

across many tissues and relevant environmental gra-

dients, but the financial challenges of such work are

large (Li et al. 2011; Qu et al. 2011; Williams et al.

2011; Cohen et al. 2013). Perhaps by attending more

to the details of a host–parasite system of interest,

studies of plasticity could be limited to the particular

set of factors that have impacted natural populations

the most for the longest time. For instance, hosts

living at high latitudes face more diverse and more

consistent infection threats across the year than hosts

living at tropical latitudes (Guernier et al. 2004).

Similarly, small hosts face different parasite chal-

lenges than big ones (Dobson and Hudson 1986),

and males and females of the same species are dif-

ferently likely to encounter parasites and differently

abled to deal with them (Nunn et al. 2009). PRN

theory accommodates well these observations and

could help guide the incorporation of plasticity

into systems immunology.

An ‘‘eco-systems’’ perspective on
WNV competence

As an example of the promise of merging PRN

theory and systems immunology, consider vertebrate

interactions with WNV. WNV is a vector-borne zoo-

nosis of the genus, Flaviviridae, that has spread to six

continents since its identification nearly 80 years ago

(Kramer et al. 2007). The transmission cycle typically

occurs among various passerines and Culex spp.

mosquito vectors (Kramer et al. 2007), yet WNV

also poses a significant threat to humans and

horses in the form of West Nile fever and encepha-

litis. Incompetent hosts, including humans, some

birds, and many other vertebrate species become in-

fected but not infectious when exposed to WNV,

maintaining titers below the critical minimum

threshold to facilitate transmission to vectors

(Komar et al. 2003). Competent hosts, by contrast,

amplify virus to sufficient levels to pass it to suscep-

tible mosquitoes (Kramer et al. 2007). In domesti-

cated mice, following inoculation via mosquito bite,

WNV initially replicates in dendritic Langerhans cells

before migrating to lymph nodes for further replica-

tion (Johnston et al. 2000; Byrne et al. 2001; Lim et

al. 2011). The virus then disseminates to peripheral

tissues (e.g., spleen), where additional replication

occurs (Suthar et al. 2013). In individuals with

high viremia, the virus may cross the blood–brain

barrier to infect the central nervous system (Samuel

and Diamond 2006), sometimes having pathogenic

effects (Suthar and Pulendran 2014).

A fuller understanding of WNV competence will

require much more work in birds, asking whether

the above domesticated mice research represents

well naturally competent hosts (Babayan et al.

2011; Maizels and Nussey 2013). So far, very little

avian WNV immunology has occurred (Pérez-

Ramı́rez et al. 2014), and the majority involves im-

munoglobulin responses, which are not obviously

relevant to the framework discussed here. Still,

high-throughput, systems-level research on model

organisms and humans has been useful to under-

standing infection by and dissemination of many vi-

ruses (Suthar and Pulendran 2014). Few so far have

focused on WNV though. In one such study, gene

expression was compared between human patients

that had previously experienced severe or asymptom-

atic infections (Qian et al. 2015). A WNV suscepti-

bility signature was developed using a combination

of microarray and Deconvolution analyses and

Nanostring gene expression. Variation in the expres-

sion of a few genes characterized a WNV-susceptible

profile (Qian et al. 2015). A second study sought to

identify the role of specific innate immune responses

in controlling WNV infection and tissue tropism in

mice (Suthar et al. 2013). Through a series of

comparative survival and viral burden analyses,

whole-genome microarrays, and bioinformatics in

wild-type and immunologically suppressed (via

gene knock-out) animals, a network of immune

genes was discovered. Intriguingly, this network

also regulated WNV replication and spleen and

liver tropism (Suthar et al. 2013), important aspects

of host competence. In light of these advances as well

as other shortcomings of current research approaches

(i.e., little consideration of network plasticity), we

advocate that future WNV systems immunology

focus particularly on PRN date hubs, as these

nodes interlink PRN subnetworks and thus coordi-

nate organismal responses to similar risks and op-

portunities (Martin and Cohen 2014).

Many date hubs warrant attention, but here we

focus on the role of glucocorticoids (namely cortisol

and corticosterone [CORT]) as host competence date

hubs because these steroids have extensive effects on
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vertebrate immunity (Martin 2009); long-term eleva-

tions tend to enhance susceptibility to and mortality

from many infections (Sapolsky et al. 2000) whereas

short-term CORT elevations can be protective

(Dhabhar 2009). CORT also affects host growth

(Hull et al. 2007), cognition (Schoech et al. 2011),

reproduction (Wingfield and Sapolsky 2003), and

various behaviors (Martins et al. 2007), implicating

them as major drivers of heterogeneity in host com-

petence because of their impacts on so many organ-

ismal processes. As just one example, consider the

tendency for CORT to damp inflammation. These

effects protect hosts from over-zealousness of the

innate immune system (Råberg et al. 1998;

Sapolsky et al. 2000). Whereas some hosts might

still die from infection (Warne et al. 2011), other

hosts might cope reasonably well with infection

and high CORT (Sternberg 2006).

Still, we know little as yet about the role of CORT

in host competence in the animals with the propen-

sity to circulate it in the wild. In one study, WNV-

exposed Northern Cardinals (Cardinalis cardinalis)

experimentally implanted with CORT exhibited

greater mortality than controls although there was

no difference in viral burden (Owen et al. 2012).

Another study found that CORT-manipulated do-

mesticated chickens (Gallus gallus) shed more virus

for longer and had higher antibody titers than con-

trols (Jankowski et al. 2010). In mice, multiple stres-

sors elevated CORT, or CORT was surgically

elevated, which increased permeability of the

blood–brain barrier, allowing easier entry of attenu-

ated WNV and subsequently more risk of neuropath-

ological death (Ben-Nathan 2013). We have no such

data for avian species even though many seem to die

from similar pathology. We expect that these studies

have just scratched the surface to revealing the role

of CORT in WNV dynamics. Unsurprisingly, there is

a growing interest in CORT as a mediator of wildlife

responses to anthropogenic effects such as climate

change, pollution, and urbanization (Martin et al.

2010). Many of these conditions alter community-

level disease risk, and it is plausible that some such

effects arise because of the effects of CORT on host

competence (Martin and Boruta 2014). Presently, we

do not yet know how CORT affects interactions

among susceptible and infected hosts and vectors,

nor do we know much about how CORT affects

host propensity to transmit WNV. Altered CORT

regulation could change PRN configurations and

thus lead some hosts to impose greater risk on

other susceptible individuals by passing more para-

sites for longer to their habitats, conspecifics, or

vectors (Cohen et al. 2012b), but this hypothesis re-

mains to be tested.

Besides CORT, some cytokines are implicated as

date hubs for WNV competence. Many cell types

produce interferons in response to viral infections

(Samuel and Diamond 2006). Type I interferons me-

diate innate and adaptive immune responses through

the actions of interferon stimulated response ele-

ments (ISREs), antiviral interferon stimulated genes

(ISGs; e.g., protein kinase R [PKR]), and T- and

B-lymphocytes (Samuel and Diamond 2006). Mice

deficient in IFN-� (IFN-��/�), a type II interferon,

experienced greater mortality, higher viremia, and

faster dissemination of WNV to peripheral and cen-

tral nervous tissues (Shrestha et al. 2006). Type I

interferons (IFN-�/�) display similar effects: WNV-

exposed IFN-�/�R�/� mice had higher mortality and

altered tissue tropism compared with wild-type mice

(Samuel et al. 2005). Critically, interferons and an-

other putative cytokine date hub, interleukin (IL)-1�,

affect the ability of the immune system to control

WNV (Ramos et al. 2012). These cytokines also

impact reproductive, behavioral, and other host pro-

cesses (Galic et al. 2009), and as with CORT, these

putative date hubs, as well as IL-6 (Hunter and Jones

2015), would be great starting points for research on

PRNs and host competence for WNV (Weil et al.

2006; Adelman and Martin 2009).

Host competence as an emergent
property

CORT, IFNs, and other date hubs help regulate host

responses to WNV by recruiting and coordinating

various subnetworks and thus mediating changes in

host phenotype. It is therefore probably the state of

the collective PRN, not single nodes, that underlies

organismal resistance, tolerance, and competence for

parasites (Martin et al. 2011). Figure 2 depicts a very

simplified PRN for vertebrate responses to WNV; the

actual nodes and edges are vastly more numerous,

and edges especially are likely to differ among species

and even individuals. What is probably important for

capturing host competence, though, is the connectiv-

ity (i.e., number of edges), modularity (i.e., distribu-

tion of edges), degree distribution (i.e., distribution

of edges from date and party hubs), and other

aspects of the whole PRN across environments.

Figure 3 highlights such a PRN reaction norm, or

in other words, changes in PRN states, changes in

parasite burden, and thus changes in host health and

competence. In the absence of WNV exposure, many

PRN edges will be absent, making connectivity low,

allowing physiological sub systems to operate

6 L. B. Martin et al.
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Fig. 2 PRN for West Nile virus infection. Example PRN for WNV responses in vertebrate hosts, highlighting CORT, type I interferons

(IFNs), and interleukin (IL)-1� as date hubs (small, filled black symbols). Pattern recognition receptors (PRRs) detect the presence of

WNV (represented by the lightning strike) and then propagate information across the PRN. Date hubs links the immune system

subnetwork to other major subnetworks within the host (i.e., growth and reproduction). Circles and plain text represent subnetworks

within the broader immune network, whereas dots and bolded text identify example nodes. Solid and dashed lines depict stable and

labile edges, respectively; see Fig. 3 for details on lability. Abbreviations: CORT¼ corticosterone, Type I IFNs¼ interferons �/�,

PKR¼ protein kinase R, ISGs¼ interferon-stimulated genes, IgM¼ immunoglobulin M, IRF¼ interferon regulatory factors (e.g., IRF3,

IRF7), ISREs¼ interferon-stimulated response elements, RLRs¼RIG-I-like receptors (e.g., MAVS). References: Quicke and Suthar

(2013), Elenkov (2004), Daffis et al. (2007, 2008, 2009), Lazear et al. (2013), Horvath (2004), Purtha et al. (2008), and Pinto et al.

(2011).

Fig. 3 PRNs and plasticity in host competence. In the absence of parasites (state 1), host PRN characteristics are set by genetic and

epigenetic variation within the host individuals. In response to parasite exposure (lightning bolt; state 2), PRN connectivity (i.e., number

of edges, black lines) and modularity (i.e., distribution of edges among nodes, not depicted) change, with date hubs (small filled symbol)

becoming highly connected to other nodes and subnetworks (large, dark black circles). Note that edges can be fixed (solid black lines)

or induced (dashed black lines). If hosts are able to resolve an infection by the initial change in PRN state, the PRN state reverts to an

unexposed (or further modified (i.e., immune memory) condition. Alternatively, if the host is unable to resolve the threat, an altogether

different PRN state may ensue. Different PRN states result in different (emergent) outcomes. Parasite tolerance (state 3) is one

possibility, but death too is a possible endpoint (state 4). Death and disease too might result from the recruitment of typically

unconnected subnetworks (light grey circles). The gray shaded rectangle emphasizes that only some PRNs will support competence, as

many PRNs will eliminate parasites (through host death, resistance, or insufficient amplification) before they can be transmitted.
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relatively autonomously. Upon exposure to WNV,

however, PRNs should change state, inducing the

formation of edges and hence regulatory relation-

ships among subnetworks. Contingent on i) the ini-

tial state of the PRN (as mediated by health,

condition, prior exposure, age, or time of year for

an individual host), ii) network characteristics

shaped by life history priorities [fast versus slow

pace of life (Ricklefs and Wikelski 2002)], and iii)

the evolutionary legacy of the species, PRNs will

reconfigure plastically, determining host responses

to and hence competence for WNV.

These predictions for relationships between PRN

dynamics and host health are consistent with basic

immunology. For instance, Th1 and especially Th17

cytokines engender strong inflammatory responses

(Sears et al. 2011). Individual hosts in which such

pro-inflammatory cytokine connectivity increases

rapidly upon exposure would be expected to take a

highly resistant defense strategy (Diaz and Allen

2007). Such hosts would be relatively incompetent.

Conversely, hosts that experience high Th2 or T reg-

ulatory cytokine connectivity upon parasite exposure

or with changing burden would manifest a robust

anti-inflammatory response. Depending on further

PRN state changes over the course of the infection,

some individuals might become particularly compe-

tent because they cease trying to resist infection and

instead activate particular PRN subnetworks facilitat-

ing tolerance (i.e., they become biased to a particular

Th cell phenotype (Diaz and Allen 2007]). As we

hinted above, changes at date hubs (e.g., CORT,

IFN�) might strongly influence such outcomes

(Sapolsky et al. 2000; Jankowski et al. 2010). If indi-

viduals with high CORT-driven connectivity do not

resist or die from infection, changes in their PRN

states might lead them to impose great transmission

risk to others, especially in some environments (i.e.,

transmission hotspots [Paull et al. 2011]). Figure 4,

borrowed from an effort to encourage neuroscience

to move from a cell- to a systems mindset (Yuste

2015), depicts the possible role of CORT for changes

in PRN states and host competence. Different envi-

ronments alter CORT regulation, which instigates

movement of the PRN, and hence the phenotype,

across the landscape (i.e., PRN structure). CORT

(and other date hubs), due to their actual and po-

tential connectivity with other nodes, alters the

depths of ‘‘basins’’ of resistance and tolerance, ulti-

mately determining whether individuals will be

competent.

This PRN competence framework promises to

work well for WNV, but it should apply to myriad

host–parasite systems. Examples include murine

malaria in which low inflammatory signaling (TNF-

�) ameliorates individual suffering from infection

(i.e., increases tolerance), and also increases parasite

transmission to mosquitoes (i.e., increases compe-

tence) (Long and Graham 2011). In many verte-

brates, TNF-� has been implicated as a PRN date

hub because of its effects on various non-immune

targets (Dantzer 2001). Similar arguments can be

made for the emerging pathogen, Mycoplasma galli-

septicum (Mg). In house finches (Haemorhous mex-

icanus), disease severity (i.e., reduced tolerance) is

positively correlated with inflammatory signaling

(IL-1� to IL-10 ratio) (Adelman et al. 2013b);

these cytokines too seem to act as date hubs. In

this system, PRN state might underlie individual

competence in a different way than above; animals

with more severe pathology (and presumably higher

inflammatory signaling) shed more Mg onto bird

feeders, potentially increasing transmission to other

susceptible hosts (Adelman et al. 2013a).

Where do we go next?

The value of our framework lies in its ability to de-

scribe how we can measure and thus describe well

traits such as resistance, tolerance, and competence

as emergent properties of an organismal network.

This framework thus captures the complexity and

plasticity inherent to suborganismal phenomena,

but it will also be effective at describing competence

heterogeneity in the interest of population-level pro-

cesses too (Downs et al. 2014). With the advent of

new, fairly inexpensive technologies (Jackson 2015),

we stand poised to collect enormous amounts of in-

formation about host–parasite interactions. Weighted

gene-coexpression network analyses and other com-

putational approaches will facilitate the use of our

PRN framework with such large datasets (Li et al.

2011). The path ahead is still fraught with challenges,

though, particularly in terms of performing experi-

ments and establishing causality. One now has the

option of manipulating single date hubs, collections

of date hubs, or whole PRN traits (i.e., connectivity,

modularity), and most such efforts will be challeng-

ing. Perhaps fields with more experience with such

hurdles can guide us. Research on the development

of morphological traits and bioelectric networks

might help us learn how whole organisms are coor-

dinated toward the same task (Levin 2014; Newman

2014). Likewise, we might reconcile problems associ-

ated with level-spanning (e.g., molecular network ef-

fects cascading up to organ function) from work on

the assembly of tissue structures from protein inter-

action networks (Hunter and de Bono 2014).
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Eventually, it will also be in our interest to evaluate

the impacts of physiological and behavioral covaria-

tion regulated by PRNs. There is a growing interest

in coupled heterogeneities in many disease systems

(Vazquez-Prokopec et al. 2016), and shared regula-

tory pathways underlie many of these relationships

(Demas et al. 2011). It will also be important to

determine the influence of various epigenetic mech-

anisms on PRN structures and states (Jablonka and

Raz 2009; Jablonka et al. 2014; Noble et al. 2014).

We recognize that PRN theory will not perfectly cap-

ture host competence, but this framework lends itself

to quantitative analysis and empirical manipulation

(Zamer and Scheiner 2014), something not yet of-

fered by other hypotheses directed at understanding

organismal health and performance such as allostasis

(McEwen and Wingfield 2003) and reactive scope

(Romero et al. 2009). Given the extensive movement

of parasites across the globe and the exorbitant costs

of their control (Heesterbeek et al. 2015), creative yet

practical interventions are needed, especially in non-

Westernized areas where access to healthcare and hy-

gienic infrastructure will remain modest (Ewald

2000).
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integration of evolutionary biology with physiological sci-

ence. J Physiol 592:2237–44.

Nunn CL, Lindenfors P, Pursall ER, Rolff J. 2009. On sexual

dimorphism in immune function. Phil Trans R Soc B Biol

Sci 364:61–9.

Ostfeld RS, Levi T, Jolles AE, Martin LB, Hosseini PR,

Keesing F. 2014. Life history and demographic drivers of

reservoir competence for three tick-borne zoonotic patho-

gens. PLoS One 9:e107387.

Owen JC, Nakamura A, Coon CA, Martin LB. 2012. The effect

of exogenous corticosterone on West Nile virus infection in

Northern Cardinals (Cardinalis cardinalis). Vet Res 43:34.

Paull SH, Song S, McClure KM, Sackett LC, Kilpatrick AM,

Johnson PT. 2011. From superspreaders to disease hotspots:

Linking transmission across hosts and space. Front Ecol

Environ 10:75–82.

Pérez-Ramı́rez E, Llorente F, Jiménez-Clavero M&Aacute;.
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Råberg L. 2014. How to live with the enemy: Understanding

tolerance to parasites. PLoS Biol 12:e1001989.
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